Tema 9.- Extensiones trascendentes. Grado de trascendencia

El material de este tema está tomado de las notas de Milne (http://www.jmilne.org/math/CourseNotes/math594f.html).

9.1 Dependencia algebraica

DEFINICIÓN 9.1.1. – Sea K:k una extensión de cuerpos. Diremos que $\alpha_1,\ldots,\alpha_n\in K$ son algebraicamente independientes sobre k si el único k-homomorfismo $\varphi:k[X_1,\ldots,X_n]\to K$ tal que $\varphi(X_i)=\alpha_i,\ i=1,\ldots,n,$ es inyectivo. En caso contrario diremos que α_1,\ldots,α_n son algebraicamente dependientes sobre k. Un subconjunto $A\subset K$ es algebraicamente independiente sobre k si cualquier subfamilia finita $\alpha_1,\ldots,\alpha_n\in K,$ con $\alpha_i\neq\alpha_j$ si $i\neq j,$ lo es.

Nota 9.1.2. Sea K:k una extensión de cuerpos.

- 1. Decir que un elemento $\alpha_1 \in K$ es algebraicamente independiente (resp. dependiente) sobre k equivale a decir que es trascendente (resp. algebraico) sobre k.
- 2. Decir que $\alpha_1, \ldots, \alpha_n \in K$ son algebraicamente dependientes sobre k equivale a la existencia de un polinomio $f(X_1, \ldots, X_n)$ no nulo con coeficientes en k tal que $f(\alpha_1, \ldots, \alpha_n) = 0$.
- 3. Si $\alpha_1, \ldots, \alpha_n \in K$ son algebraicamente independientes sobre k, entonces $k[\alpha_1, \ldots, \alpha_n] \simeq k[X_1, \ldots, X_n]$ y $k(\alpha_1, \ldots, \alpha_n) \simeq k(X_1, \ldots, X_n)$.

PROPOSICIÓN 9.1.3.— Sea K:k una extensión de cuerpos, $\beta \in K$ y $A \subset K$. Las propiedades siguientes son equivalentes:

- 1. β es algebraico sobre k(A).
- 2. Existen $\alpha_1, \ldots, \alpha_n \in k(A)$ tales que $\beta^n + \alpha_1 \beta^{n-1} + \cdots + \alpha_{n-1} \beta + \alpha_n = 0$.
- 3. Existen $\alpha_0, \alpha_1, \dots, \alpha_n \in k[A]$, con $\alpha_0 \neq 0$, tales que $\alpha_0 \beta^n + \alpha_1 \beta^{n-1} + \dots + \alpha_n = 0$.
- 4. Existe un polinomio $F(X_1, \ldots, X_n, Y) \in k[X_1, \ldots, X_n, Y]$ y unos $a_1, \ldots, a_m \in A$ tales que $F(a_1, \ldots, a_n, Y) \neq 0$ y $F(a_1, \ldots, a_n, \beta) = 0$.

DEFINICIÓN 9.1.4.— Cuando se verifican las propiedades equivalentes de la proposición anterior diremos que β depende algebraicamente de A sobre k. También diremos que un subconjunto $B \subset K$ depende algebraicamente de A sobre k si todo elemento $\beta \in B$ dependende algebraicamente de A sobre k.

LEMA 9.1.5.— (Lema de intercambio) Sea K: k una extensión de cuerpos y $A = \{\alpha_1, \ldots, \alpha_n\} \subset K$. Si $\beta \in K$ depende algebraicamente de A (sobre k) pero no

de $\{\alpha_1, \ldots, \alpha_{n-1}\}$, entonces α_n depende algebraicamente de $\{\alpha_1, \ldots, \alpha_{n-1}, \beta\}$.

LEMA 9.1.6.— (Transitividad de la dependencia algebraica) Sea K:k una extensión de cuerpos y $A, B, C \subset K$. Si C depende algebraicamente de B y B depende algebraicamente de A, entonces C depende algebraicamente de A.

TEOREMA 9.1.7. Sea K:k una extensión de cuerpos y $A,B\subset K$ dos subconjuntos finitos. Supongamos que:

- 1. A es algebraicamente independiente sobre k.
- 2. A depende algebraicamente de B sobre k.

Entonces $\sharp A \leq \sharp B$.

9.2 Bases de trascendencia

DEFINICIÓN 9.2.1.— Sea K:k una extensión de cuerpos. Diremos que un subconjunto $A \subset K$ es una base de trascendencia de K:k si A es algebraicamente independiente sobre k y K es una extensión algebraica de k(A).

LEMA 9.2.2.— Si K es una extensión algebraica de k(A) y A es minimal entre los subconjuntos de K con esta propiedad (i.e. K no es una extensión algebraica de k(A') para cualquier $A' \subset A, A' \neq A$), entonces A es una base de trascendencia de K: k.

TEOREMA 9.2.3.— Sea K:k una extensión de cuerpos tal que existe un subconjunto finito $A \subset K$ de manera que K es una extensión algebraica de k(A). Entonces existen bases de trascendencia de K:k y todas ellas tienen el mismo número (finito) de elementos.

COROLARIO 9.2.4.— Toda extensión de cuerpos finitamente generada posee bases de trascendencia y todas ellas tienen el mismo número (finito) de elementos

DEFINICIÓN 9.2.5.— Dada una extensión de cuerpos K:k verificando la hipótesis del teorema 9.2.3, al cardinal de cualquiera de sus bases de trascendencia lo llamaremos grado de $\operatorname{trascendencia}$ de la extensión y lo notaremos por $\operatorname{gr.tr.}_k(K)$.

Proposición 9.2.6. Sea K:k una extensión de cuerpos. Se tienen las propiedades siguientes:

- 1. Si $A \subset K$ es algebraicamente independiente sobre k y $A \cup \{\beta\}$ es algebraicamente dependiente sobre k, entonces β es algebraico sobre k(A).
- 2. Todo subconjunto $A \subset K$ algebraicamente independiente sobre k maximal es una bese de trascendencia de K:k.

Nota 9.2.7.- Usando el lema de Zorn y la proposición anterior es posible demostrar que cualquier extensión de cuerpos K:k posee bases de trascendencia, posiblemente de cardinal infinito, y que dos bases de trascendencia de una misma extensión tienen el mismo cardinal.